Monday, 13 May 2013

Gain Function of a filter in Excel

What have I gained

Last time I wrote about how to apply a filter to some time series data. The example given at the end of the post showed the effect of applying a filter to some clothing data from the ONS.

However, what did the filter actually do?

As mentioned before, the filter removes some frequencies from the series. The frequencies that have been removed are revealed by looking at the gain function. Although it should be pointed out that we're interested in the periodicities rather than frequencies.

The macro

It's another array function - this cuts down on processing and makes the calculation within Excel quicker and more efficient.

Without further ado:
--------------------------------------------------------------------------
Function GainFunction(filter As Variant, Optional b As Variant) As Variant

    Dim OutputRows As Long
    Dim OutputCols As Long
    Dim output() As Double
    Dim vert As Boolean
    Dim i As Integer
    Dim j As Integer
    Dim c() As Double
    Dim d() As Double
    Dim size As Integer
    Dim g1() As Double
    Dim g2() As Double
    
    'Load a into array c
    If TypeName(filter) = "Range" Then
        If filter.Rows.Count > filter.Columns.Count Then
            ReDim c(1 To filter.Rows.Count)
            For i = 1 To UBound(c)
                c(i) = filter(i, 1)
            Next
        Else
            ReDim c(1 To filter.Columns.Count)
            For i = 1 To UBound(c)
                c(i) = filter(1, i)
            Next
        End If
    Else
        ReDim c(1 To UBound(filter))
        For i = 1 To UBound(c)
            c(i) = filter(i)
        Next
    End If
    
    With Application.Caller
        OutputRows = .Rows.Count
        OutputCols = .Columns.Count
    End With
    ReDim output(1 To OutputRows, 1 To OutputCols)
    
    'Populate output with zeroes
    For i = 1 To OutputRows
        For j = 1 To OutputCols
            output(i, j) = 0
        Next
    Next
    
    If IsMissing(b) Then
        If OutputRows > OutputCols Then
            vert = True
            size = OutputRows
            ReDim g1(1 To OutputRows)
            ReDim g2(1 To OutputRows)
            ReDim d(1 To OutputRows)
        Else
            vert = False
            size = OutputCols
            ReDim g1(1 To OutputCols)
            ReDim g2(1 To OutputCols)
            ReDim d(1 To OutputCols)
        End If
        
        For i = 1 To size
            d(i) = i
        Next
    Else
        'Load b into array d
        If TypeName(b) = "Range" Then
            If b.Rows.Count > b.Columns.Count Then
                vert = True
                size = b.Rows.Count
                If size > OutputRows Then size = OutputRows
                If size < OutputRows Then Exit Function
                ReDim g1(1 To size)
                ReDim g2(1 To size)
                ReDim d(1 To size)
                For i = 1 To size
                    d(i) = b(i, 1)
                Next
            Else
                vert = False
                size = b.Columns.Count
                If size > OutputCols Then size = OutputCols
                If size < OutputCols Then Exit Function
                ReDim g1(1 To size)
                ReDim g2(1 To size)
                ReDim d(1 To size)
                For i = 1 To UBound(d)
                    d(i) = b(1, i)
                Next
            End If
        Else
            size = UBound(b)
            If OutputRows > OutputCols Then
                vert = True
                If size > OutputRows Then size = OutputRows
                If size < OutputRows Then Exit Function
            Else
                vert = False
                If size > OutputCols Then size = OutputCols
                If size < OutputCols Then Exit Function
            End If
            
            ReDim g1(1 To size)
            ReDim g2(1 To size)
            ReDim d(1 To size)
            For i = 1 To size
                d(i) = b(i)
            Next
        End If
    End If
    
    'Create gain function
    For i = 1 To size
        g1(i) = 0
        g2(i) = 0
        For j = 1 To UBound(c)
            g1(i) = g1(i) + c(j) * Cos(j * 2 * [pi()] / d(i))
            g2(i) = g2(i) + c(j) * Sin(j * 2 * [pi()] / d(i))
        Next
        If vert = True Then
            output(i, 1) = Sqr(g1(i) ^ 2 + g2(i) ^ 2)
        Else
            output(1, i) = Sqr(g1(i) ^ 2 + g2(i) ^ 2)
        End If
    Next
    
    GainFunction = output

End Function
--------------------------------------------------------------------------

As ever, most of the macro is concerned with setting up the parameters and dealing with the fact that the input data could be horizontal or vertical. Only the last 10 or so lines actually calculate the gain function.

The optional variable/parameter b is the list of periodicities to calculate the function for. You don't have to include it, but I strongly recommend that you do. In this way you can control what you're checking.

I also recommend that you don't bother looking at periodicities less than 1. Below 1 the frequencies tend toward infinity and the gain function becomes very spiky (that's the technical term).

An Example

Using the 13 point symmetric filter (1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13, 1/13) gives the following gain function:


As you can see from the chart, zeroes in the gain function occur at 13, 6.5 and then half the preceding periodicity from then on. These periodicities are removed from the data. And everything from just over 1 to around 14 are, mostly, removed. So most of the short term, high frequency data is smoothed out.

The filter shown here has the same number for each of the 13 terms. It doesn't have to, although it does make it easier to predict what will happen to the data. Essentially the data point is just the average of the surrounding 12 points - 6 from either side.

There is another aspect to filters which I will cover in the next blog. And that is the change to the phasing of the data.

Until next time.

No comments:

Post a Comment